定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图题目内容:定义域为[a,b]的函数y=f(x)图象的两个端点为A、B,M(x,y)是f(x)图象上任意一点,其中x=λa (1-λ)b∈[a,b],已知向量ON=λOA (1-λ)OB,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.若函数y=x-1x在[1,2]上“k阶线性近似”,则实数k的取值范围为______. 最佳答案:由题意,M、N横坐标相等,|MN|≤k恒成立,即|MN|max≤k, 由N在AB线段上,得A(1,0),B(2,32), ∴直线AB方程为y=32(x-1) ∴|MN|=y1-y2=x-1x-32(x-1)=32-(x2 1x)≤32-2(当且仅当x=2时,取等号) ∵x∈[1,2],∴x=2时,|MN|max=32-2 ∴k≥32-2 故答案为:k≥32-2 考点核心:平面向量在几何、物理中的应用 1、向量在平面几何中的应用: (1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义; (2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件; (3)证明垂直问题,常用向量垂直的充要条件; 1、向量在三角函数中的应用: (1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题; (2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。 2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。 3、向量在解析几何中的应用: (1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题; (2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
本文来源:开通【终极会员】享锚链接服务>>>
版权声明
本站转载或会员发布作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。 这家伙挺懒,还没写签名! | |