已知P为△ABC内一点,且3AP 4BP 5CP=0.延长AP交BC于点D,若AB=题目内容:已知P为△ABC内一点,且3AP 4BP 5CP=0.延长AP交BC于点D,若AB=a,AC=b,用a、b表示向量AP、A D. 最佳答案:∵BP=AP-AB=AP-a,CP=AP-AC=AP-b, 又3AP 4BP 5CP=0, ∴3AP 4(AP-a) 5(AP-b)=0, 化简,得AP=13a 512b. 设AD=tAP(t∈R), 则AD=13ta 512tb.① 又设BD=kBC(k∈R),由BC=AC-AB=b-a,得BD=k(b-a).而AD=AB BD=a BD, ∴AD=a k(b-a)=(1-k)a kb.② 由①②,得13t=1-k512t=k.解得t=43. 代入①,有AD=49a 59b. 考点核心:平面向量在几何、物理中的应用 1、向量在平面几何中的应用: (1)证明线段相等平行,常运用向量加法的三角形法则、平行四边形法则,有时也用到向量减法的定义; (2)证明线段平行,三角形相似,判断两直线(或线段)是否平行,常运用到向量共线的条件; (3)证明垂直问题,常用向量垂直的充要条件; 1、向量在三角函数中的应用: (1)以向量为载体研究三角函数中最值、单调性、周期等三角函数问题; (2)通过向量的线性运算及数量积、共线来解决三角形中形状的判断、边角的大小与关系。 2、向量在物理学中的应用: 由于力、速度是向量,它们的分解与合成与向量的加法相类似,可以用向量方法来解决,力做的功就是向量中数量积的一种体现。 3、向量在解析几何中的应用: (1)以向量为工具研究平面解析几何中的坐标、性质、长度等问题; (2)以向量知识为工具研究解析几何中常见的轨迹与方程问题。
本文来源:开通【终极会员】享锚链接服务>>>
版权声明
本站转载或会员发布作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。 这家伙挺懒,还没写签名! | |