不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b| |b-c|题目内容:不相等的有理数a,b,c在数轴上的对应点分别为A,B,C,如果|a-b| |b-c|=|a-c|,那么B点应为() (1)在A,C点的右边; (2)在A,C点的左边; (3)在A,C点之间; (4)以上三种情况都有可能. 最佳答案:|a-b| |b-c|=|a-c|表示:数轴上表示a,b,c三个数的点距离之间的关系,a到b的距离,即b到a的距离与到c的距离的和等于a与c之间的距离,因而点B在A,C之间. ∴选(3). 答案解析:该题暂无解析 考点核心:绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。绝对值用“||”来表示。在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做a-b的绝对值,记作|a-b|。
本文来源:开通【终极会员】享锚链接服务>>>
版权声明
本站转载或会员发布作品均注明出处,本网未注明出处和转载的,是出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如转载作品侵犯作者署名权,或有其他诸如版权、肖像权、知识产权等方面的伤害,并非本网故意为之,在接到相关权利人通知后将立即加以更正。 这家伙挺懒,还没写签名! | |